Combinatorics and Graph Theory

M. Math. II
Semestral Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple. Results proved in the course can be used without proof.

1. Prove that the number of points in a Steiner triple system must be 1 or 3 modulo 6 .
2. Prove that Hall's matching theorem for bipartite graphs is equivalent to the König's theorem on maximum matching in a bipartite graph.
3. Prove that every planar graph with at least four vertices have at least four vertices of degree less than 6 .
4. Compute the characteristic polynomial of the following graphs
(a) The complete graph K_{n}
(b) The complete bipartite graph $K_{n, m}$
5. Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be minimum cuts in a transportation network. Show that $\left(X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right)$ is also a minimum cut.
6. Prove that the MaxFlow-MinCut theorem implies the Hall's matching theorem for bipartite graphs.
